Surface Characteristics and Fatigue Behavior of Gradient Nano-Structured Magnesium Alloy
نویسندگان
چکیده
High-frequency impacting and rolling was applied on AZ31B magnesium alloy to obtain a gradient nano-structured surface. Surface characteristics were experimentally investigated, and the nanocrystallization mechanism is discussed in detail. Results showed that the gradient nano-structure with the characteristics of work hardening, compressive residual stress and a smooth surface was induced on the treated surface. Grains on the top surface were generally refined to around 20 nm. Twins, dislocations and dynamic recrystallization dominated the grain refinement process. Fatigue strength of the treated specimens corresponding to 107 cycles was increased by 28.6% compared to that of the as-received specimens. The work hardened layer induced by high-frequency impacting and rolling is the major reason to improve fatigue life.
منابع مشابه
Thermo-mechanical analysis of magnesium alloy cylinder heads using a two-layer viscoplasticity model
Loading conditions and complex geometry have led the cylinder heads to become the most challenging parts of diesel engines. The aim of this study is to compare the distribution of temperature and stress in the aluminum and magnesium cylinder heads under thermo-mechanical loads. The three-dimensional model of the cylinder heads was simulated in abaqus software and a two-layer viscoplasticity mod...
متن کاملScatter Analysis of Fatigue Life and Pore Size Data of Die-Cast AM60B Magnesium Alloy
Scatter behavior of fatigue life in die-cast AM60B alloy was investigated. For comparison, those in rolled AM60B alloy and die-cast A365-T5 aluminum alloy were also studied. Scatter behavior of pore size was also investigated to discuss dominant factors for fatigue life scatter in die-cast materials. Three-parameter Weibull function was suitable to explain the scatter behavior of both fatigue l...
متن کاملMechanical Behavior of an Ultrafine/Nano Grained Magnesium Alloy
The application of magnesium alloys is greatly limited because of their relatively low strength and ductility. An effective way to improve the mechanical properties of magnesium alloy is to refine the grains. As the race for better materials performance is never ending, attempts to develop viable techniques for microstructure refinement continue. Further refining of grain size requires, however...
متن کاملFATIGUE BEHAVIOUR OFA ROLLED AZ31 MAGNESIUM ALLOYS PREPARED BY EPAND BB CONDITIONS
Abstract: Rotating bending fatigue tests have been performed using smooth specimens of a rolled AZ31 magnesium alloy in laboratory air at ambient temperature. Fatigue strength and characteristic was evaluated and fracture mechanism was discussed on the basis fracture surface analysis. Electrical polishing (EP) as well as deep rolling (ball burnishing (BB)) U-notched specimens were performed on ...
متن کاملA new low cycle fatigue lifetime prediction model for magnesium alloy based on modified plastic strain energy approach
Nowadays, the technology intends to use materials such as magnesium alloys due to their high strength to weight ratio in engine components. As usual, engine cylinder heads and blocks has made of various types of cast irons and aluminum alloys. However, magnesium alloys has physical and mechanical properties near to aluminum alloys and reduce the weight up to 40 percents. In this article, a new ...
متن کامل